

Economics of Greenhouse Gas Trading: Reaching Environmental Goals Cost Effectively

Bruce Braine, U.S. Working Group Chair and VP of AEP Ben Feldman, U.S. Working Group and Executive Director, J.P. Morgan

Overview

- Background on Cap and Trade and Emissions Trading
- Advantages of Emissions Trading
- US Experience with SO2 Emissions Trading and NOx Trading
- EU Experience with CO2 and Greenhouse Gas Emissions Trading

Cap and Trade - What It Isn't!

- "...cap and trade is too volatile, complex and susceptible to manipulation to sustain the needed investment milieu."
 - Richmond Times-Dispatch: "Backlash from House Bill is driving Senate Delays", August 30, 2009.
- "...oppose creating any carbon market."
 - Senator Byron Dorgan (D-ND) Bloomberg.com: "Goldman, JPMorgan Face Carbon Market Curbs in Senate Proposals", August 13, 2009.
- "...concerned about the potential for excessive speculation in carbon credits to distort their value."
 - Former Agriculture Committee Chairman Tom Harkin (D-IA) Agriculture Online: "Carbon trading needs to be transparent, lawmakers told", September 10, 2009.
- IN FACT, EVIDENCE SUGGESTS THAT EMISSIONS TRADING HAS NEVER BEEN SUBJECT TO MANIPULATION AND PRICING IS LESS VOLATILE THAN OTHER ENERGY COMMODITIES.

What is Emissions Trading?

- Emissions Trading = Flexible "Market" compliance
 - Saves Money but Provides the Same (and Often Better) Environmental Outcome.
- In an emissions trading system, a <u>regulated</u> company or entity is:
 - Required to meet an "Emissions Cap"
 - Typical Cap = Annual Tons Emitted per year
 - Issued "Emission Allowances" Each Year
 - Number of Allowances Issued = Emissions Cap
 - At the end of the year, entity must hold Allowances = Actual Annual Emissions.
- Allowances may be bought or sold ("traded")
- Allowances can be saved ("banked") for use in later years

How Does Emissions Trading Work?

XYZ Electric Company:

- Current Emissions =100,000 Tons SO2 Per Year
- 2010 Emissions Cap/Allowances = 50,000 Tons SO2

ABC Electric Company:

- Current Emissions = 70,000 Tons SO2 per Year
- 2010 Emissions Cap/Allowances = 35,000 Tons by 2010

XYZ has low cost reduction opportunities:

- Over-complies by reducing its emissions to 40,000 Tons SO2 in 2010
- Sells its excess 10,000 allowances (I.e. 50,000 Allowances-40,000 Emissions)

ABC has higher cost reductions:

- Reduces its emissions to 45,000 Tons. (Cap/Allowances = 35,000) Means Deficit of 10,000 Allowances
- Buys 10,000 Allowances from XYZ Company

Advantages of Emissions Trading

- Emissions trading reduces costs.
 - An unrestricted emissions trading system will provide the "most bang for the environmental buck".
 - Flexibility to achieve reductions at lowest cost.
 - Competitive market forces drive down compliance costs.
- Emissions trading provides more environmental benefits than plant-by-plant standards.
 - Trading results in greater compliance than standards based system.
 - EPA found virtually 100% compliance for its SO2 program.
 - Banking creates market incentives to reduce emissions more today while lowering long run costs.

Banking Promotes Additional Reductions

SO2 Emissions and the Allowance Bank

Banking provides incentives to make additional reductions for future compliance periods, leading to both lower compliance costs and more total reductions.

Key Cost Containment Elements

"Where" Flexibility

- Intra and inter-company trading
- Interstate and international trading
- Trading with Offsets (uncapped sectors or entities)

"When" Flexibility

- Banking
- Borrowing (in CO2 markets)
- Trading with offsets (uncapped sectors or entities)

Other Mechanisms

Strategic Allowance Reserves (in CO2 markets)

Background: US SO2 Trading System

- In 1990, U.S. Congress passed the Clean Air Act Amendments (CAAA) of 1990.
 - Among other provisions, the CAAA required additional SO2 reductions from electric utilities in the U.S. in two phases:
 - Phase I beginning in 1995
 - Phase II beginning in 2000 (Cap=50% Reduction in SO2)
- The CAAA also included an emissions trading program.
 - Companies could buy, sell or bank emission allowances as long as they had enough allowances at the end of each year to cover their actual emissions.

Results of SO2 Program: Trading = Lower Costs

- U.S. EPA study and OMB studies found annual costs much less than expected.
 - Initial estimate. \$6 billion vs. final estimates of. \$1-2 billion/year
- Why were annual costs only 25% of projections?
 - Company averaging of reductions ("intra-company trading") lowered costs vs. plant-by-plant limits.
 - "Banking" yielded significant net cost savings (and lowered emissions in near term).
 - More "lower cost" reductions (e.g. fuel switching) were made during Phase I, postponing or offsetting some "high cost" reductions (e.g. scrubbing) well beyond 2000.
 - "Inter-company trading"
 - Directly reduced costs
 - Provided price discovery
 - Increased fuel supplier and vendor competition

"Trading" Example: AEP Savings from Auction Purchases

- Between 2000-2004, AEP bought 0.76 MM allowances @\$132 per ton for \$100 MM.
- Purchased allowances displaced scrubber and fuel switching roughly estimated to cost an average of \$400 per ton.
- Thus, AEP's 2000-2004 auction purchases reduced costs ~ \$200 million.

Trading and Banking Yield Significant Environmental Benefits

Due to early reductions and banking and credits, the SO2 program resulted in over 20% more reductions in the US than required (~7 million tons).

NOx Trading Programs Were Also Successful

- The U.S. OTC NOx Budget Trading Program reduced NOx emissions by over 60% between 1999 – 2002.
- The U.S. NOx SIP Call Program, 2002 present, reduced NOx emissions by 62% compared to 2000 levels.
 - 2008 NOx emissions were 9% <u>below</u> the 2008 emissions cap.
- Rough proxy for compliance cost savings---actual allowance prices vs. allowance price projections.
 - EPA has used \$2,600/ton as its highly cost-effective price.
 - Generally, NOx allowances have traded around \$1,000/ton.
 - This represents over 50% lower costs per ton than projected.

EU Emissions Trading Scheme Basics

- Phase 2 part of EU-Wide Kyoto Commitment
- Cap and Trade program covering approximately 12,000 industrial installations
 - Represents 40% of EU Emissions
- Design based on US SO₂ Program
- Flexible mechanisms include banking, borrowing, allowance trading and international offsets
 - Offsets-allow least-cost reductions to be sourced from outside the cap, lowering program cost
 - Allowances fully bankable into Phase 3 (2013- 2020)

A word on EU ETS Phase 1 Growing pains

- Much made of 2006 price collapse during Phase 1 of EU-ETS but unrelated to policy mechanism or market manipulation
 - What happened—too many emissions allowances were issued due to faulty emissions data
 - When emissions data released, market corrected to reflect oversupply of allowances
 - Poor coordination of data release exacerbated problems
- Lessons learned and incorporated into Phase 2 and US legislation
 - Carbon markets work like other real markets--scarcity is a prerequisite
 - Long-term bankability of allowances to preserve store of value
 - Coordinated, transparent release of emissions and other market moving data essential to market confidence

Phase 2 Program Performance

- Installations covered under EU ETS achieving 100% compliance and EU Emissions on downward trend
 - Program delivering quantitative certainty with respect to emissions
 - Phase 3 targets support long-term planning
- Carbon price signal influencing production and consumption decisions
- Flexible mechanisms—banking, borrowing and international offsets provide supply elasticity
- Markets—spot, exchange traded futures, options and OTC derivatives—functioning without indications of market manipulation or abuse

EU ETS Market Performance and Function

- Carbon commodities have not exhibited excessive volatility relative to other commodities
- Within reasonable bounds volatility is essential to market function—allows producers and consumers to respond to price signals
- Flexible mechanisms create supply elasticity that dampens potential for price spikes
- Full range of market options allows firmlevel management of risk exposure

Volatility of Selected Commodities 2005-2007 Range in %	
EUA Dec 06 Futures	27-161 (57)
EUAs Dec 08 futures	28-91 (62)
SO2 spot price (1995-2006)	8-44
Natural Gas (Zeebrugge)	55-138
Crude Oil (Brent)	24-32
Coal (ARA)	8-22
Baseload Electricity (Powernext)	35-96
Peak Electricity (Powernext)	42-105

Source: Ellerman, Denny, Joskow, Paul (2008), Mission Cliat, Caisse des Depots.

NOTE: The figures in parentheses for the two EUA products is the highest observed voltility when the second quarter of 2006 is excluded.

International Offsets Providing Key Benefits

- Covered Installations using international offsets to lower compliance costs
 - Prevents premature retirement of economic assets
 - Preserves capital to fund new, cleaner capital stock
- EU Member States using international offsets to meet portion of their emissions reduction shortfalls
 - Offsets serve as backstop to achieve overall emissions reduction target including emissions not covered by EU ETS
- Reduces societal cost by drawing on lower cost reduction opportunities in less developed countries

Conclusions and Observations

 Cap and Trade has proven track record: meeting environmental goals and beating cost forecasts

Mechanisms are well understood

- Mandatory declining cap ensures environmental goal
- Banking and long term certainty about targets enables efficient capital planning
- Flexible mechanisms including full range of market instruments fosters price discovery, enables financing, risk management, competition and technological innovation
- Offsets lower costs, allow emissions reductions to occur earlier, avoids premature capital stock turnover
- Realizing benefits requires full suite of features